Spectral approximation of the IMSE criterion for optimal designs in kernel-based interpolation models

نویسندگان

  • Bertrand Gauthier
  • Luc Pronzato
  • BERTRAND GAUTHIER
چکیده

We address the problem of computing IMSE-optimal designs for random field interpolation models. A spectral representation of the IMSE criterion is obtained from the eigendecomposition of the integral operator defined by the covariance kernel of the random field and integration measure considered. The IMSE can then be approximated by spectral truncation and bounds on the error induced by this truncation are given. We show how the IMSE and truncated-IMSE can be easily computed when a quadrature rule is used to approximate the integrated MSE and the design space is restricted to a subset of quadrature points. Numerical experiments are carried out and indicate (i) that retaining a small number of eigenpairs (in regard to the quadrature size) is often sufficient to obtain good approximations of IMSE optimal quadrature-designs when optimizing the truncated criterion and (ii) that optimal quadrature-designs generally give efficient approximations of the true optimal designs for the quadrature approximation of the IMSE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximation of IMSE-optimal Designs via Quadrature Rules and Spectral Decomposition

We address the problem of computing IMSE (Integrated Mean-Squared Error) optimal designs for random fields interpolation with known mean and covariance. We both consider the IMSE and truncated-IMSE (approximation of the IMSE by spectral truncation). We assume that the MSE is integrated through a discrete measure and restrict the design space to the support of the considered measure. The IMSE an...

متن کامل

Approximation of IMSE-optimal designs via quadrature rule and spectral decomposition

We address the problem of computing IMSE (Integrated Mean Square Error) optimal designs for random fields interpolation with known mean and covariance. We assume that the MSE is integrated through a discrete measure and restrict the design space to the support of the measure considered. For such quadrature designs, the computational cost of IMSE evaluations can be significantly reduced by consi...

متن کامل

Convex relaxation for IMSE optimal design in random-field models

The de nition of an Integrated Mean-Squared Error (IMSE) criterion for the learning of a random eld model yields a particular Karhunen-Loève expansion of the underlying eld. The model can thus also be interpreted as a Bayesian (or regularised) linear model based on eigenfunctions of this Karhunen-Loève expansion, and can be approximated by a linear model involving orthogonal observation errors....

متن کامل

Mercer Kernels and Integrated Variance Experimental Design: Connections Between Gaussian Process Regression and Polynomial Approximation | SIAM/ASA Journal on Uncertainty Quantification | Vol. 4, No. 1 | Society for Industrial and Applied Mathematics

This paper examines experimental design procedures used to develop surrogates of computational models, exploring the interplay between experimental designs and approximation algorithms. We focus on two widely used approximation approaches, Gaussian process (GP) regression and nonintrusive polynomial approximation. First, we introduce algorithms for minimizing a posterior integrated variance (IV...

متن کامل

Mercer kernels and integrated variance experimental design: connections between Gaussian process regression and polynomial approximation

Abstract. This paper examines experimental design procedures used to develop surrogates of computational models, exploring the interplay between experimental designs and approximation algorithms. We focus on two widely used approximation approaches, Gaussian process (GP) regression and nonintrusive polynomial approximation. First, we introduce algorithms for minimizing a posterior integrated va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017